ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ СТЭНЛИ

ДАТЧИКИ ДАВЛЕНИЯ МАЛОГАБАРИТНЫЕ ДАВЛЕНИЯ КОРУНД-ДХ001М модели 3XX

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ КТЖЛ. 406234.002-13 РЭ

Оглавление

		Стр.
1.	Введение	3
2.	Назначение	3
3.	Технические данные	3
4.	Состав изделия	5
5.	Устройство и работа	5
6.	Маркировка и пломбирование	5
7.	Упаковка	6
8.	Общие эксплуатационные ограничения и меры безопасности	6
9.	Установка датчиков	6
10.	Обеспечение безопасности при эксплуатации датчиков	7
11.	Подготовка к работе	8
12.	Измерение параметров, регулирование, настройка	8
13.	Поверка датчиков	8
14.	Техническое обслуживание	8
15.	Возможные неисправности и методы их устранения	9
16.	Транспортирование и хранение	10
17.	Утилизация	10
ПРИЛ	ОЖЕНИЕ А.	
	Метрологические характеристики моделей датчиков	12
ПРИЛ	ОЖЕНИЕ Б.	
	Схемы внешних электрических соединений	.13
ПРИЛ	ОЖЕНИЕ В.	
	Габаритные и присоединительные размеры датчиков КОРУНД	15

1. ВВЕДЕНИЕ

Руководство по эксплуатации содержит технические данные, описание принципа действия и устройства, а также сведения, необходимые для правильной эксплуатации датчиков давления малогабаритных КОРУНД-ДХ-001М моделей 3XX (далее по тексту - датчиков).

2. НАЗНАЧЕНИЕ

2.1. Датчики КОРУНД-ДХ-001М моделей ЗХХ предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами и обеспечивают непрерывное преобразование измеряемого параметра - избыточного давления (КОРУНД-ДИ), разрежения (КОРУНД-ДИВ) и разности давлений (КОРУНД-ДДН) воздуха и неагрессивных газов в унифицированный электрический выходной сигнал постоянного тока.

Корпус датчика выполнен из алюминиевого сплава, штуцеры – из латуни (кроме моделей 325) Корпус и штуцеры моделей 325 выполнены из нержавеющей стали.

Датчики предназначены для измерения давления воздуха и неагрессивных газов.

- 2.2. Датчики предназначены для работы с вторичными контрольно-измерительными, показывающими, регистрирующими, и регулирующими приборами, а также контроллерами и другими устройствами автоматики, работающими с входными сигналами 0 5 мA; 4 20 мA; 0 20 мA; 0 5 B; 0 10 B; 0,4 2 B; 0,5-4,5 В постоянного тока.
 - 2.3. По степени защищенности от воздействий пыли и воды датчики имеют исполнения IP65 по ГОСТ 14254-80.
- 2.4. Датчик с выходным сигналом 4-20 мА может быть укомплектован индикатором ИДД, который включается в разрыв линии связи.
 - 2.5. Верхние пределы измерений датчиков соответствуют ГОСТ 22520-85.
 - 2.6. Датчики могут градуироваться в следующих единицах измерения:
 - Па, кПа по умолчанию;
 - атм, кгс/см² (ат), bar, мм рт. ст. (Torr), м вод. ст., psi, psf по заказу.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

- 3.1. Наименование датчиков различных моделей, пределы измерений, допускаемые давления и погрешности указаны в приложении А. По предварительно согласованному заказу, нижний и верхний пределы измерений могут быть смещены.
- 3.2. Пределы допускаемой основной погрешности датчиков γ , выраженные в процентах от диапазона изменения выходного сигнала, равны ± 0.1 ; ± 0.15 ; ± 0.25 ; ± 0.5 ; ± 1.0 % в зависимости от модели (см. приложение A) и заказа.
 - 3.3. Вариация выходного сигнала датчика не превышает $\gamma_r \le 0.5 |\gamma|$.
 - 3.4. Зона нечувствительности датчика не превышает 0,1% от диапазона измерений.
- 3.5. Датчики имеют линейно возрастающую (или убывающую) характеристику выходного сигнала с предельными значениями выходных сигналов 0 5 мA; 4 20 мA; 0 20 мA; 0 5 B; 0,4 2 B; 0,5-5,5 B; 0 10 В постоянного тока (в соответствии с заказом).

Номинальная статическая характеристика датчика с линейно-возрастающей зависимостью аналогового выходного сигнала от входной измеряемой величины имеет вид:

$$Y = Y_{\rm H} + \frac{Y_{\rm B} - Y_{\rm H}}{P_{\rm o} - P_{\rm u}} \cdot (P - P_{\rm H}) \tag{1}$$

где У - текущее значение выходного сигнала датчика;

 $Y_{\text{в}}, Y_{\text{н}}$ - соответственно верхнее и нижнее предельные значения выходного сигнала;

Р - текущее значение измеряемого давления;

 $P_{\scriptscriptstyle \rm B}$ - верхний предел измеряемого давления;

 $P_{\rm H}$ - нижний предел измеряемого давления.

3.6. Напряжение питания датчиков с токовым выходным сигналом Uпит = 9...36 В постоянного тока, но не менее

$$U_{\Pi} = 9 + 20 \cdot R_{H}, B$$
 (2)

где $R_{\rm H}$ - сопротивление нагрузки, к ${\sf OM}$, включая сопротивление линии связи.

Для датчиков с выходным сигналом 0-5 В; 0-10 В необходимо напряжение питания 15-36 В;

Для датчиков с выходным сигналом 0,4-2 В необходимо напряжение питания 4,5-15 В.

- 3.7. Сопротивление нагрузки датчиков (с учетом линии связи) должно составлять:
- в пределах $0 \le R_{\rm H} \le 2000~{\rm OM}$ для датчиков с выходным сигналом 0-5 (5-0) мА;
- в пределах $0 \le R_{\rm H} \le 1000~{\rm OM}$ для датчиков с выходным сигналом 4-20 (20-4), 0-20 (20-0) мА;
- $R_{\rm H} \ge 1~{\rm к0M}$ для датчиков с выходным сигналом 0-5 В; 0,5-4,5 В, 0-10 В и ≥10 кОм для сигнала 0,4-2 В.
- 3.8. Датчики в зависимости от выходного сигнала и исполнения подключаются по двух-, трех- или четырехпроводной линии связи:
 - четырехпроводная линия связи для датчиков с выходным сигналом 0-5 мА, 0-20 мА;
 - трехпроводная для датчиков с выходным сигналом 0-5В; 0,5-4,5В; 0-10В; 0,4-2В; 0-5мА; 0-20 мА;
 - двухпроводная линия связи для датчиков с выходным сигналом 4-20 мА.

Схемы внешних электрических соединений датчиков приведены в приложении Б:

- 3.9. Мощность, потребляемая датчиками с выходным сигналом 0-20 мA, 4-20 мA, не более 0,75 BA, а с выходным сигналами 0-5 мA, 0-5 B, 0,5-5,5 B, 0-10 B не более 0.54 BA.
 - 3.10. Датчики предназначены для работы при атмосферном давлении от 84,0 до 106,7 кПа (от 630 до 800 мм рт.ст.).
- 3.11. В зависимости от исполнения датчики по устойчивости к климатическим воздействиям по ГОСТ 15150-69 соответствуют исполнению «У» категории размещения 2 (группа исполнения C2 по ГОСТ Р 52931-2008), но для эксплуатации при температуре окружающей среды от 0 до плюс 60 $^{\circ}$ C, или исполнению «УХЛ» категории размещения 3.1 (группа исполнения C4 по ГОСТ Р 52931-2008), но для эксплуатации при температуре окружающей среды от минус 40 до плюс 80 $^{\circ}$ C.
- 3.12. Датчики устойчивы к воздействию температуры окружающего воздуха в диапазоне температур от 0° C до $+60^{\circ}$ C (от -40° C до $+80^{\circ}$ C опция).
- 3.13. Дополнительная погрешность датчиков γ_t , вызванная изменением температуры окружающего воздуха и выраженная в процентах от диапазона измерения на 10° С изменения температуры от средней точки температурного диапазона не должна превышать значений, указанных в табл. 1.
 - 3.14. По защищенности от воздействий пыли и воды датчики имеют исполнения IP65 по ГОСТ 14254-96.
- 3.15. По устойчивости к механическим воздействиям датчики соответствуют виброустойчивому исполнению V2 по ГОСТ Р 52931-2008.

Дополнительная погрешность датчиков от воздействия вибрации γ_f не превышает $\pm 0.2~\%$ от диапазона изменения выходного сигнала.

- 3.16. Дополнительная погрешность датчика, вызванная воздействием внешнего переменного магнитного поля частотой 50 Гц и напряженностью 400 А/м или внешнего постоянного магнитного поля напряженностью 400 А/м, выраженная в процентах от диапазона изменения выходного сигнала, не превышает ±0,2%.
- 3.17. Дополнительная погрешность от изменения напряжения питания не превышает 0.1% во всем диапазоне напряжения питания.

Пределы допускаемой дополнительной температурной погрешности датчиков γ_t , %/10 $^{\circ}$ C.

Таблица 1

иапазон температурной компенсации	Основная погрешность γ , %				
диапазон температурной компенсации	0.1	0.15	0.25	0.5	1.0
0 +60	±0.06	±0.06	± 0.08	± 0.12	± 0.2
-10+70	± 0.08	± 0.08	± 0.12	± 0.15	± 0.2
-40+80	± 0.1	± 0.1	± 0.17	± 0.21	± 0.25

- 3.18. Дополнительная погрешность от изменения сопротивления нагрузки, указанного в п.3.7, не превышает 0.1% от диапазона измерения.
 - 3.19. Сопротивление изоляции электрических цепей датчика относительно корпуса не менее:
 - 20 МОм при температуре окружающего воздуха плюс (20±2)°С и относительной влажности до 80%;
 - 5 МОм при температуре окружающего воздуха плюс (80±3)°С и относительной влажности до 60%;
 - 1 МОм при температуре окружающего воздуха плюс $(35\pm3)^{\circ}$ С и относительной влажности до 95%.
- 3.20. Время установления выходного сигнала датчика от 10 до 90% при реакции на скачок давления $t_{\rm ycr}$ определяется по формуле:

$$t_{ycr} = t_{3c} + t_{39} (3)$$

где $t_{\rm ac}$ - время отклика чувствительного сенсора;

 t_{39} - время задержки электронного блока.

Время отклика сенсора t_{3c} составляет 10⁻³ с.

Время задержки электронного блока составляет 8 · 10⁻² с;

- 3.21. По уровню устойчивости к электромагнитным помехам датчики относятся к техническим средствам класса В по ГОСТ Р 51522-99, ГОСТ Р 51317.4.2-99.
- 3.22. Датчики выдерживают давление перегрузки, указанное в таблице 5 приложения A, в зависимости от типа и модели датчика. После перегрузки, в зависимости от времени ее действия и условий работы датчика, может потребоваться подстройка нуля.
 - 3.23. Норма средней наработки на отказ датчика 250000 ч.
 - 3.24. Средний срок службы датчиков не менее 15 лет.
 - 3.25. Масса датчиков КОРУНД-ДХ-001М моделей ЗХХ составляет около 180 г.
 - 3.26. Габаритные и присоединительные размеры датчиков приведены в приложении В.

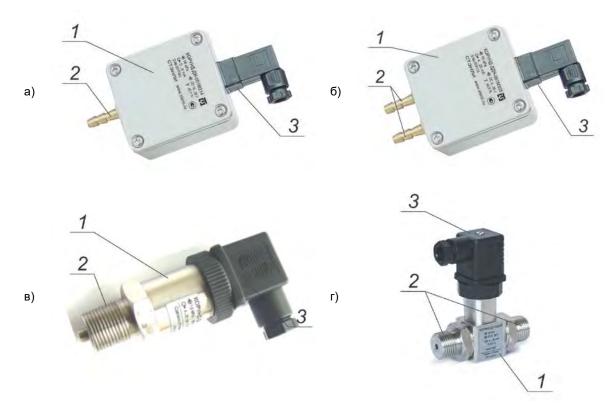
4. СОСТАВ ИЗДЕЛИЯ

4.1. Комплект поставки датчика указан в таблице 2.

Таблица 2

		Обозначение	Наименование	Количество	Примечание	
Γ.	1	Согласно приложению А	Датчик давления КОРУНД	1		
2	2	КТЖЛ.406234.002-13. РЭ	Руководство по эксплуатации	1	1 экз. на каждые 10 датчиков.	
;	3	КТЖЛ.406234.002. ПС	Паспорт	1		

5. УСТРОЙСТВО И РАБОТА


5.1. Внешний вид датчиков представлен на рис. 1. Датчики содержат первичный измерительный преобразователь давления (разности давлений) и электронный нормирующий преобразователь, расположенные в корпусе 1. Присоединение к источнику давления происходит через штуцер 2 (штуцеры для разности давлений). Около штуцера плюсовой камеры на корпусе датчиков разности давлений имеется специальная отметка («+» или «●»). Электрическое присоединение осуществляется через коннектор 3.

Работа датчиков всех моделей основана на преобразовании измеряемого давления (разности давлений) в электрический сигнал с помощью чувствительного элемента, усилении этого сигнала в электронном блоке и преобразовании в форму, удобную для дистанционной передачи в виде унифицированного сигнала постоянного тока или напряжения. Через электрический соединитель (разъем, коннектор, или выводной кабель) сигнал передается на вторичную аппаратуру.

5.2. В датчиках для подстройки нуля и диапазона в процессе эксплуатации может использоваться корректор нуля и диапазона (поставляется отдельно).

6. МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 6.1. На табличке, прикрепленной к корпусу датчика, наносится следующее:
- название и логотип предприятия-изготовителя, знак соответствия датчика гос. реестру средств измерения
- краткое наименование датчика: КОРУНД с условным обозначением типа датчика;
- порядковый номер датчика по системе нумерации предприятия-изготовителя;
- пределы измерений с указанием единицы измерений;
- выходной сигнал;
- параметры питания.
- 6.2. Табличка изготовлена из несъемной клеевой пленки. Маркировка нанесена на табличку методом лазерной гравировки.
 - 6.3. На потребительскую тару датчика наклеена этикетка, содержащая:
 - товарный знак или наименование предприятия-изготовителя;
 - условное обозначение датчика;
 - год выпуска.
 - 6.4. Электронное устройство датчика размещено внутри корпуса и может быть опломбировано на

Puc. 1 Внешний вид датчиков давления КОРУНД-ДХ-001М моделей 3XX

- а) датчиков избыточного давления, разряжения, давления-разряжения (кроме модели 325 в));
- б) датчиков разности давлений (кроме модели 325 г));
- в) датчиков избыточного давления, разряжения, давления-разряжения модель 325;
- г) датчиков разности давлений модель 325.

7. УПАКОВКА

7.1. Упаковка производится в соответствии с ГОСТ 23170-78 и обеспечивает сохраняемость датчиков при хранении и транспортировке.

8. ОБЩИЕ ЭКСПЛУАТАЦИОННЫЕ ОГРАНИЧЕНИЯ И МЕРЫ БЕЗОПАСНОСТИ

- 8.1. По степени защиты человека от поражения электрическим током датчики относятся к классу 01 по ГОСТ 12.2.007.0 -75 и соответствуют требованиям безопасности по ГОСТ Р 52931-2008.
- 8.2. Замену, монтаж, присоединение и отсоединение датчиков производить при отсутствии давления в магистралях, в измерительных камерах (полостях) датчика и при отключенном питании.
- 8.3. Не допускается эксплуатация датчиков в системах, в которых рабочее давление может превышать предельные значения, указанные в таблице 5 приложения А. Следует избегать действия на датчик давления перегрузки, выходящего за пределы измерений.
- 8.4. Датчики должны обслуживаться персоналом, имеющим квалификационную группу по технике безопасности не ниже ІІ в соответствии с ПЭЭП.
- 8.5. Не допускается применение датчиков для измерения давления сред, агрессивных по отношению к материалам датчиков, контактирующим с этими средами;
 - 8.6. Прежде чем приступить к монтажу датчиков необходимо:
 - тщательно изучить настоящее руководство по эксплуатации;
 - осмотреть датчики, проверить их целостность, маркировку, элементы крепления и соединения.

Датчики, имеющие деформации или иные видимые дефекты, эксплуатировать категорически запрещено.

- 8.7. Линия связи может быть выполнена любым типом кабеля с медными проводами сечением не менее 0.35 мm^2 согласно гл. 7.3. ПУЭ.
 - 8.8. Подсоединение и заделка кабеля производится при отключенном питании.
 - 8.9. Подключение датчика выполняется согласно схемам внешних соединений (см. приложение Б).

9. УСТАНОВКА ДАТЧИКОВ

- 9.1. Датчики могут монтироваться в положении, удобном для монтажа и обслуживании. При монтаже датчиков необходимо учитывать следующее:
- 9.2. Датчики КОРУНД-ДХ-001М рекомендуется устанавливать на вертикальной поверхности через монтажные отверстия в корпусе датчика. Расположение и размеры монтажных отверстий приведены в приложении В. Датчики рекомендуется устанавливать так, чтобы присоединительные штуцеры были направлены вертикально вниз. Допускается устанавливать в ином положении, если этого требуют особые условия эксплуатации. Однако изменение ориентации датчиков может привести к негативным последствиям уходу начального («нулевого») сигнала (особенно для низкопредельных датчиков), попаданию в измерительные камеры конденсата и др.

Для установки датчика необходимы следующие операции.

- 1) В соответствии с размерами, приведенными на габаритно-монтажном чертеже (приложение В), на монтажной поверхности разметить и просверлить два отверстия. При необходимости, нарезать в них резьбу, учитывая, что фиксация датчиков на монтажной поверхности может производиться винтами (максимальный размер резьбы М4) или саморезами (максимальный диаметр 4 мм).
 - 2) Вывернуть из датчика четыре винта, фиксирующих крышку, снять крышку.
 - 3) Закрепить датчик на монтажной поверхности.
 - 4) Закрыть датчик крышкой.
- 5) Присоединить к штуцеру (штуцерам) гибкие трубопроводы. При необходимости зафиксировать их хомутами.
- 6) Присоединить к кабельной части коннектора электрический кабель в соответствии со схемой соединений (Приложение Б). Расположение контактов на коннекторе представлено на рис. 2.
 - 9.3. Подсоединение датчиков к источникам давления выполнять с соблюдением следующих правил и условий.
- 9.3.1. К процессу давления датчики присоединяются с помощью ниппеля, фиксируемого в гибком эластичном шланге с помощью хомута.
- 9.3.2. Длина трубки, соединяющей датчик с местом отбора давления, определяется условиями эксплуатации. Для снижения влияния температуры измеряемой среды на показания датчика длина трубки должна быть увеличена. Увеличение длины трубки ведет к снижению динамических характеристик датчика.
- 9.3.3. Влияющие условия внешней и контролируемой среды должны иметь параметры в пределах, указанных в разделе 3.
- 9.3.4 Соединительные линии между местом отбора давления и датчиком должны иметь уклоны для предотвращения попадания в камеры датчика конденсата.
- 9.3.5. Линии давления и элементы их соединения между собой и с датчиками должны быть проверены на герметичность пробным давлением, не превышающим допустимых пределов измерений. Проверка должна осуществляться в соответствии с общими правилами безопасности.

10. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ДАТЧИКОВ

- 10.1. К эксплуатации датчиков должны допускаться лица, изучившие настоящую инструкцию и прошедшие необходимый инструктаж.
- 10.2. При эксплуатации датчиков необходимо выполнять все местные инструкций, действующие в данной отрасли промышленности.
- 10.3. При эксплуатации датчики должны подвергаться систематическому внешнему и периодическому осмотрам в соответствии с указаниями раздела 15
 - 10.4. При внешнем осмотре датчика необходимо проверить:
 - сохранность пломб (при их наличии);
 - наличие и надежность крепления электронного устройства;
 - отсутствие обрыва или повреждения изоляции соединительного кабеля;
 - надежность присоединения кабеля;
 - отсутствие вмятин и видимых механических повреждений, а также пыли и грязи на корпусе датчика.
- 10.5. При профилактическом осмотре должны быть выполнены все вышеуказанные работы внешнего осмотра. Периодичность профилактических осмотров датчиков устанавливается в соответствии с требованиями раздела 15.

При этом дополнительно должны быть выполнены следующие работы:

- чистка клемм и полостей электронного устройства датчика от пыли и грязи;
- проверка сопротивления изоляции электрических цепей датчика относительно корпуса мегаомметром с номинальным напряжением 500 В. Сопротивление изоляции должно быть не менее 20 МОм при температуре

окружающего воздуха (+25±5) ^ОС и относительной влажности не более 80%;

- проверка и устранение нарушений в соединениях.
- 10.6. После профилактического осмотра производится подключение отсоединенных цепей и элементов, а сам датчик при необходимости пломбируется.

11. ПОДГОТОВКА К РАБОТЕ

11.1. Перед включением датчиков необходимо убедиться в соответствии их установки и подключения требованиям разделов 10-12.

12. ИЗМЕРЕНИЕ ПАРАМЕТРОВ, РЕГУЛИРОВАНИЕ, НАСТРОЙКА

- 12.1. Датчик является однопредельным. Измерение параметров производится в соответствии со схемой приложения Б.
- 12.2. После установки датчика в рабочее положение согласно правилам раздела 12, или, при необходимости, на специально оборудованном стенде, настройку производите следующим образом:
 - 12.2.1. Подключить корректор нуля в разрыв линии связи датчика.
 - 12.2.2. Включите питание и выдержите датчик во включенном состоянии не менее 5 мин.
- 12.2.3. Задайте на входе датчика нижний предел измеряемого давления и подстройте корректором "нуля" соответствующее значение выходного сигнала для данной модели датчика.
- 12.2.4. Задайте верхний предел измеряемого давления и, при необходимости, подстройте корректором "диапазона" соответствующее предельное значение выходного сигнала.
- 12.2.5. Выполните операции, указанные в п.п. 14.2.3 и 14.2.4, несколько раз до тех пор, пока значения выходного сигнала не будут установлены в требуемых пределах (см. раздел 15).
- 12.2.6. Проверьте основную погрешность датчика в соответствии с таблицей 5 приложения А, и если она выходит за допустимые пределы, повторите настройку по п.14.2.5.
 - 12.2.7. Отключите корректор нуля и восстановите линию связи.
 - 12.2.8.Отсоедините средства настройки и приведите датчик в состояние рабочей готовности.

13. ПОВЕРКА ДАТЧИКОВ

13.1. Поверка датчиков осуществляется в соответствии с методикой поверки КТЖЛ. 406234.003 МП, утвержденной ВНИИМС при ГОССТАНДАРТЕ РФ и настоящего руководства. Данная методика распространяется на датчики с основной погрешностью ± 0.1 ; ± 0.15 ; ± 0.25 ; ± 0.5 ; ± 1.0 %.

Периодическая поверка производится не реже одного раза в межповерочный интервал в сроки, установленные руководством предприятия в зависимости от условий эксплуатации, после ремонта датчиков и их восстановления (после отказа).

Интервал между поверками 2 года. Для датчиков с допускаемой основной погрешностью 1% и 0,5% - 5 лет.

14. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 14.1. Техническое обслуживание (ТО) должны выполнять лица, изучившие настоящий документ, прошедшие соответствующий инструктаж и допущенные к выполнению ТО.
- 14.2. При техническом обслуживании должны соблюдаться правила безопасности, а также технологические требования, указанные в разделах 10-15 и принятые на предприятии, эксплуатирующем датчики.
- 14.3. Для поддержания работоспособного состояния датчика и его внешних соединений предусматриваются текущее или оперативное (ТТО) и периодическое или плановое (ПТО) техническое обслуживание, в процессе которого выполняются следующие основные операции:
 - проверка внешнего состояния и функционирования датчика, его внешних соединений и линий;
 - при необходимости, корректировка «нуля» датчика;
 - периодическая проверка работоспособности и поверка датчика.
 - 14.4. Порядок технического обслуживания
- 14.4.1. Текущее (оперативное) техническое обслуживание (ТТО) предполагает систематический внешний осмотр датчика по п.п. 12.4-12.6, а также оперативную проверку функционирования и технического состояния датчика, устройств, подводящих давление, электрических линий и соединений.

При TTO могут выполняться, в основном, простые восстановительные операции, не связанные с ремонтом и заменой датчика.

Если установлена необходимость ремонта, следует оформить рекламацию, демонтировать датчик и отправить его на ремонт (раздел 17).

ТТО выполняется оператором или дежурным персоналом с регулярностью, определяемой состоянием и

работой датчика и системы, в которой он применяется.

В оперативном порядке контролируют реакцию сигнала датчика при изменении рабочего давления среды. 14.4.2. При ПТО производят:

- 1) профилактический осмотр датчика и его соединений (см. п.п. 12.4-12.6 и 15.5);
- 2) проверку и, при необходимости, восстановление работоспособности датчика, линий давления, электрических линий и соединений, а также подстройку «нуля» датчика (см. п.п. 14.2.6 14.2.8);
 - 3) поверку (см. раздел 14) и техническое освидетельствование датчика;

При проведении этих работ определяют необходимость замены или ремонта датчика.

Работы, указанные в п.п. 1), 2) и 3), выполняются специально подготовленным персоналом с квалификацией, соответствующей технической задаче.

Периодичность работ, указанных в п.п. 1), 2) и 3), определяется предприятием, но не реже 1 раза в 5 - 7 месяцев, за исключением экстренных случаев. В начальный период эксплуатации (приработки) рекомендуется проводить профилактические работы 1 - 2 раза в месяц, при необходимости корректируя «нуль» датчика.

Поверка должна выполняться представителями метрологической службы или лицами, допущенными к поверке датчиков с периодичностью, определяемой предприятием, но не реже указанной в разделе 15.

- 14.5. Профилактические работы, проверка состояния и работоспособности датчика при ПТО.
- 14.5.1. При профилактическом осмотре проверяют:
- 1) целостность корпуса и крепежа;
- 2) сохранность пломб (при их наличии);
- 3)целостность кабеля и его внешних соединений и уплотнений, отсутствие короткого замыкания цепей линии связи. При наличии повреждений и коротких замыканий кабель следует заменить;
- 4) плотность и герметичность соединений датчика с линией давления. Неплотные соединения должны быть затянуты и уплотнены;
 - 5) прочность крепления датчиков, резьбовые соединения должны быть затянуты.
 - 14.5.2. При проверке состояния и работоспособности датчика, необходимо выполнить следующие операции.
- 1) Проверить наличие и стабильность сигнала при постоянном давлении на входе датчика и его реакцию на изменение давления. При нарушениях нормального режима работы датчика следует проверить рабочее состояние линий давления (см. п.16.5.2.2) и электрических линий (см.п.16.5.2.3). Проверить герметичность соединения (см. п.16.5.2.4), подстроить «ноль» датчика. Если настроить нормальный режим восстановить не удается, необходимо произвести внеплановую поверку (см. разд. 14) и (или) отправить датчик на ремонт (разд.16).
- 2) Проверить подводящие линии на отсутствие загрязнений, пробок и конденсата. При их наличии произвести очистку подводящих линий.
- 3) Проверить состояние электрической линии связи, внешних соединений с датчиком и, при необходимости, восстановить их рабочее состояние, отключив питание.
- 4) Проверить герметичность линий, подводящих давление к датчику и их крепление к датчику. При необходимости, устранить негерметичность системы затяжкой крепежа или заменой необходимых элементов.
- 5) Отключив датчик от источника питания проверить состояние контактов клемм, а также сопротивление изоляции электрических цепей (сигнальных контактов) относительно корпуса датчика. Сопротивление изоляции должно быть не менее 20 МОм при температуре окружающего воздуха +(25±5)^оС и относительной влажности не более 80%. Клеммы и контакты очистить и промыть для обеспечения надежности соединений.
- 14.5.3. Датчики не допускаются к дальнейшей эксплуатации, если их параметры, после ТО, выходят за пределы, установленные настоящим руководством. Такие датчики, следует отправить на поверку или в ремонт, оформив соответствующую рекламацию на текущий или капитальный ремонт или на списание. Капитальный ремонт выполняется службой изготовителя

15. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

15.1.Общие указания.

Текущий ремонт датчиков выполняется ремонтной службой изготовителя после сложных отказов, связанных с ремонтом или заменой основных частей датчика.

Ремонтная служба предприятия должна установить признаки и предполагаемые причины неисправности и оформить дефектную ведомость (рекламацию) для передачи ремонтной службе изготовителя.

15.2.Меры безопасности.

При демонтаже и монтаже, подготовке к ремонту датчиков должны соблюдаться правила безопасности, технологические требования, указанные в разделах 9-14 и принятые на предприятии, эксплуатирующем датчики.

- 15.3.Возможные характерные отказы и методы их устранения указаны в таблице 3.
- 15.4.Выполняемые ремонтные работы должны фиксироваться в паспорте датчика или сопроводительном документе, что необходимо для учета отказов и работоспособности датчика.

Таблица 3

Описание отказов и повреждений	Возможные причины	Указания по устранению последствий отказов и повреждений		
1. Отсутствует или	1.1. Обрыв линии связи, нарушение	1.1. Проверить линию связи и соединения, клеммы,		
периодически	соединений	разъем датчика. Восстановить связь и контакты.		
пропадает сигнал	1.2. Отказ блока питания	1.2. Проверить и восстановить или заменить блок		
		питания.		
	1.3. Отказ датчика	1.3. Отправить датчик на ремонт изготовителю.		
2. Сигнал нестабилен	2.1. Загрязнение, увлажнение	2.1. Очистить, просушить контакты соединения		
	контактов соединений,			
	2.2. Негерметичность датчика,	2.2. Проверить герметичность датчика и обвязки.		
	обвязки.	Устранить негерметичность обвязки.		
	2.3. Нарушение изоляции линии связи	2.3. Восстановить изоляцию кабеля или заменить его.		
	2.4.Отказ датчика	2.4. Отправить датчик на ремонт изготовителю.		
3. Сигнал смещен и не	3.1. Смещение «нуля»	3.1. Подстроить ноль.		
соответствует давлению	3.2. Нарушилась изоляция линии	3.2. Восстановить изоляцию и соединения.		
(зашкаливает или не	(кабеля, соединений)			
устанавливается	3.3. Загрязнены линии, подводящие	3.3. Очистить, промыть линии, подводящие давление.		
верхний предел или «0»)	давление.			

16. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

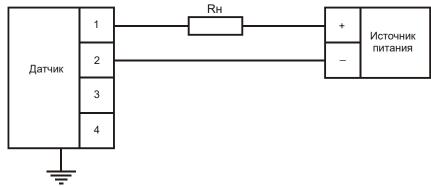
- 16.1. Датчики транспортируются всеми видами транспорта, в том числе воздушным транспортом в отапливаемых герметизированных отсеках. Способ укладки ящиков с изделиями должен исключать возможность их перемещения.
 - 16.2. Условия транспортирования должны соответствовать условиям хранения 5 по ГОСТ 15150-69.
- 16.3. Изделия могут храниться как в транспортной таре, с укладкой по 5 ящиков по высоте, так и в потребительской таре на стеллажах.

Условия хранения датчиков в транспортной таре соответствует условиям хранения 3 по ГОСТ 15150-69. Условия хранения датчиков в потребительской таре - 1 по ГОСТ15150-69.

16.4. При транспортировании и хранении следует предусматривать меры безопасности при размещении изделий, исключающие повреждение изделий и травматизм.

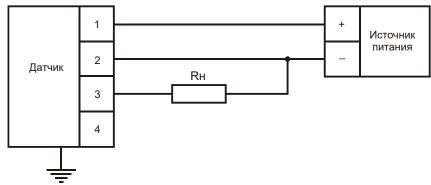
17. УТИЛИЗАЦИЯ

- 17.1. При утилизации следует соблюдать правила безопасности демонтажа, принятые на предприятии потребителе (разделы 10-15).
 - 17.2. При утилизации датчиков следует выполнить следующие операции:
- 17.2.1. Определить непригодность датчиков к дальнейшей эксплуатации, оформив соответствующий акт (на списание и т.п.).
- 17.2.2. Разобрать датчики на поддающиеся разборке составные части: штуцер, корпус, крышку, разъем, тензопреобразователь, модуль электроники датчиков.
- 17.2.3. Разделить составные части по группам: металлические части; тензопреобразователи; разъемы, электронные платы и компоненты.
- 17.2.4. Определить внешний вид и возможность использования для ремонта или восстановления отдельных составных частей предприятием потребителем или изготовителем. Согласовать с изготовителем возможность и условия передачи ему частей, которые не представляют ценности для потребителя. Передать их изготовителю с сопроводительными документами, включающими паспорт, рекламационные и другие записи. Подобное взаимодействие с изготовителем позволит накопить данные по работоспособности датчиков и совершенствовать их конструкцию.
- 17.2.5. Определить необходимость и условия утилизации оставшихся составных частей и жидкости разобранных датчиков и отправить на дальнейшую утилизацию с описью комплекта.


ПРИЛОЖЕНИЕ А

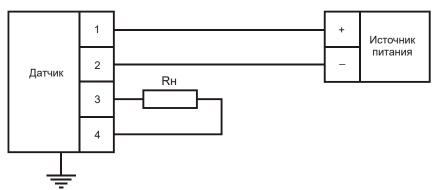
Метрологические характеристики моделей датчиков

Таблица 5


Вид измеряемого давления	Модель	Нижний диапазон измерения (Рн), кПа	Верхний диапазон измерения (Рв), кПа	Максимальная нагрузка, кПа	Основная приведенная погрешность, ±%
Избыточное давление (ДИ)	310 311 312 313 325	0 0 0 0	0,1; 0,25; 0,4 0,6; 1,0 1,6; 2,5 4,0; 6,0 0,1; 0,25; 0,4	3 х Рв	0,1; 0,25; 0.5, 1.0 (0,25; 0.5, 1.0 для датчиков с верхним диапазоном измерений ≤1,0 кПа)
Разность давлений (ДДН)	300 301 302 303 325	0 0 0 0	0,1; 0,25; 0,4 0,6; 1,0 1,6; 2,5 4,0; 6,0 0,1; 0,25; 0,4	3 х Рв	0,1; 0,25; 0.5, 1.0 (0,25; 0.5, 1.0 для датчиков с верхним диапазоном измерений ≤1,0 кПа)
Разряжение (ДР)	350 351 352 353 325	0 0 0 0	0,1; 0,25; 0,4 0,6; 1,0 1,6; 2,5 4,0; 6,0 0,1; 0,25; 0,4	3 х Рв	0,1; 0,25; 0.5, 1.0 (0,25; 0.5, 1.0 для датчиков с верхним диапазоном измерений ≤1,0 кПа)
Давление- разряжение (ДИВ)	331 (325)	-0,1 -0,25 -0,4 -0,6 -1,0	+0,1 +0,25 +0,4 +0,6 +1,0	-3 x Рн / +3 x Рв	0,5; 1.0 0.25; 0.5; 1.0 0,1; 0,25; 0,5; 1,0 0,1; 0,25; 0,5; 1,0
разряжение (ДИВ)	332 (325)	-1,6 -2,5 -4,0 -6,0	+1,6 +2,5 +4,0 +6,0	-3 х Рн / +3 х Рв	0,1; 0,25; 0,5; 1,0 0,1; 0,25; 0,5; 1,0 0,1; 0,25; 0,5; 1,0 0,1; 0,25; 0,5; 1,0

Схемы внешних электрических соединений датчиков КОРУНД

Puc. 3


Схема соединения датчиков КОРУНД с выходным сигналом 4-20 мА. Rн — нагрузочное сопротивление в соответствие с п.3.7

Puc. 4

Схема соединения датчиков КОРУНД с выходным сигналом 0-5 мA; 0-20 мA; 5-0 мA; 20-0 мA (трехпроводная)

Rн – нагрузочное сопротивление в соответствие с п.3.7

Puc. 5

Схема соединения датчиков КОРУНД с выходным сигналом 0-5 мA; 0-20 мA; 5-0 мA; 20-0 мA (четырехпроводная)

Rн – нагрузочное сопротивление в соответствие с п.3.7

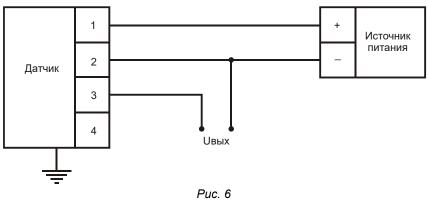
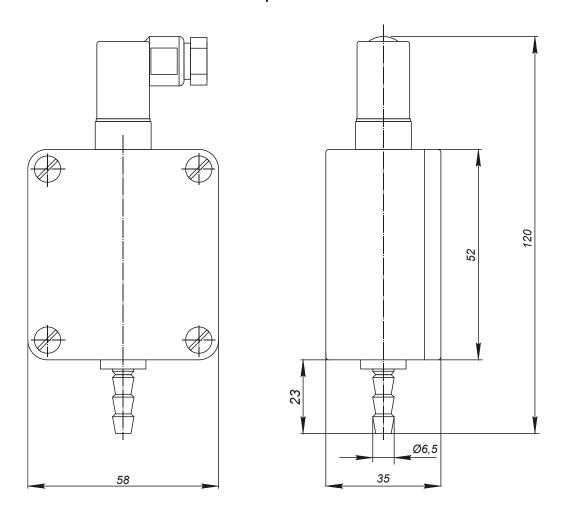
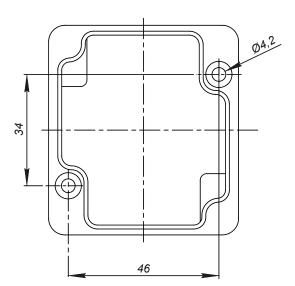
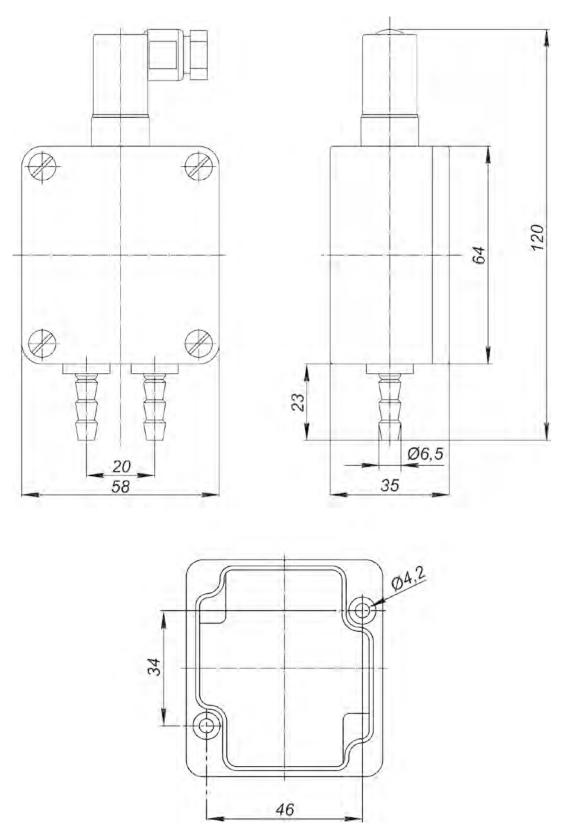




Схема соединения датчиков КОРУНД с выходным сигналом 0-5 B, 0.5 - 4.5 B, 0.4-2 B, 0-10 B.


Габаритные и монтажные размеры датчиков Корунд-ДХ-001М серии ЗХХ

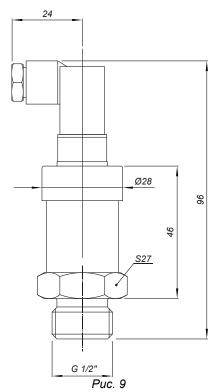
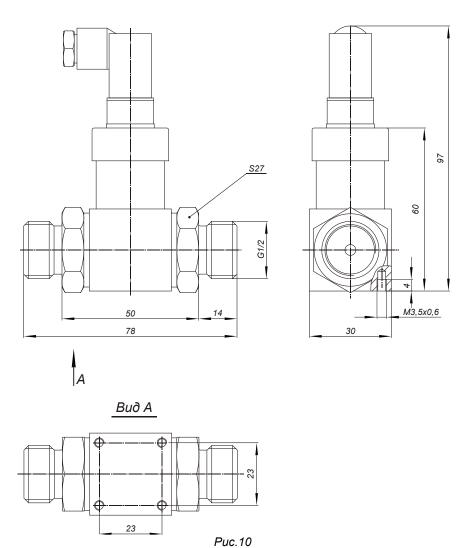

Размеры отверстий для монтажа на плоской поверхности

Рис. 7 Габаритные и монтажные размеры датчиков Корунд-ДИ-001-МЗхх; Корунд-ДА-001-МЗхх; Корунд-ДР-001-МЗхх; Корунд-ДИВ-001-МЗхх (кроме модели 325)



Размеры отверстий для монтажа на плоской поверхности

Рис.8 Габаритные и монтажные размеры датчиков Корунд-ДДН-001-М3х (кроме модели 325)

Габаритные и монтажные размеры датчиков Корунд-ДИ-001-М325; Корунд-ДА-001-М325; Корунд-ДР-001-М325; Корунд-ДИВ-001-М325

гис. то Габаритные и монтажные размеры датчиков Корунд-ДДН-001-М325)